If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(x^2-9)-(4-x^2-9)=-5
We move all terms to the left:
4(x^2-9)-(4-x^2-9)-(-5)=0
We add all the numbers together, and all the variables
-(4-x^2-9)+4(x^2-9)+5=0
We multiply parentheses
-(4-x^2-9)+4x^2-36+5=0
We get rid of parentheses
x^2+4x^2-4+9-36+5=0
We add all the numbers together, and all the variables
5x^2-26=0
a = 5; b = 0; c = -26;
Δ = b2-4ac
Δ = 02-4·5·(-26)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{130}}{2*5}=\frac{0-2\sqrt{130}}{10} =-\frac{2\sqrt{130}}{10} =-\frac{\sqrt{130}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{130}}{2*5}=\frac{0+2\sqrt{130}}{10} =\frac{2\sqrt{130}}{10} =\frac{\sqrt{130}}{5} $
| 4y−3=−(−4y+3) | | (x−4)^2=9 | | m2+12m=0 | | a^2=11a | | x–8=12 | | 2(5y-10)=5y+40 | | x–6=4 | | −7x−2=−4(x+4)+7 | | 12s=20949 | | 3.9(13.6r-4.7)=50.4 | | 40-x/3=4+ | | 5(x+9/10)=6(x+9/4) | | 7(u+6)=-4(5u-8)+9u | | 6x+48x-40=3x-6 | | x÷3-3=15 | | 0.544+50.4x^2=0 | | 0.544+54.4x^2=4x^2 | | 7x-18=-28+2x | | 8x+4+6x-12=180 | | 3=(x/8) | | 10+2(2x+1)=6 | | 2p-61=21 | | -4(2t+6)=0 | | x^2+8x+256=0 | | 4(t-3)+4=4(2t-7) | | 43-x=32 | | 54+55x=0 | | 3^(4x+1)=243 | | 13/11=u/12 | | 0.05*x=150 | | (16-8a)^2=0 | | 20x2=-67x+56 |